CHM212General Chemistry
3 credits
The purpose of this course is to present a general outline on chemistry. Through this course chemistry is introduced in its various aspects: the structure of the atom, the various models, and the properties of the elements in the periodic table; various chemical bonds, the Lewis structure, VSEPR rules; thermochemistry, thermodynamics and chemical equilibrium; kinetic chemistry, reactions rate orders, the Arrhenius law; solutions chemistry, acids and bases and various acid base equilibrium; complexation, liquid solid equilibrium and solubility product; and Oxydoreduction titration and electrochemical cells.
CHM270Laboratory of General Chemistry
1 credits
The general chemistry laboratory aims to develop different skills for the practical application of theoretical knowledge of general chemistry. Techniques to be learned: preparation and dilution of solutions, experimental verification of the Nernst equation, realization of different types of acidbase and redox titration by volumetric, calorimetric, pHmetric or potentiometric monitoring, and the study of solubility and precipitation reactions and characterization of ions present in a given matrix. The goal of the lab course is to ensure that students are capable of understanding the chemical concepts and to carry out experiments safely and carefully in the laboratory, to obtain data accurately and to manipulate the data correctly.
GBM330Biology for Biomedical Engineers
3 credits
This course aims to introduce biomedical engineering students to fundamental sub-disciplines of biology such as molecular biology, cell biology, biochemistry, and genetics. The main concepts tackled during this course include cell structure and function, cell membrane composition, transport and trafficking, cell signaling, DNA structure, cell cycle, mitosis, meiosis, genetics and nucleic acids inheritance. In addition, the course will discuss the basis of the development of certain important diseases such as cancer, diabetes and mechanisms of therapeutic intervention.
GBM340Physiology for Biomedical Engineers
3 credits
This course sets the basic concepts for future interfacing between engineering and physiology. It is designed to provide Biomedical Engineering graduate students with the fundamental physiological principles, processes and regulatory mechanisms of the major organ functions in the body. Throughout the course the students will learn about the contribution of both the body's organs and systems to maintaining the internal environment relatively constant, i.e., homeostasis, which is necessary for all cells and organs to function normally. Particular emphasis is given to the nervous, musculoskeletal, cardiovascular, respiratory, digestive, excretory, and endocrine systems.
GBM377Biology for Biomedical Engineers Laboratory
1 credits
This course provides students with the correct use of the optical microscope, in order to understand the way the cells of the human body work separately and together, and to familiarize the students with the basic concepts of cellular structure. It is also a way to practice observation with details of many kinds of tissues of the human body.
GBM440Biophysics for Biomedical Engineers
3 credits
This course covers a number of topics in physics, including principles of light and radiation, acoustic waves, electricity and magnetism, in order for students to understand the physiological performances of a living cell and its interactions with the environment. The aim is to introduce students to these essential physiological processes that occur every day in our life by focusing on new developments and technologies related to this field.
GEN250Modern Physics
3 credits
The course covers principles and concepts of relativity, quantum mechanics and their applications. The following topics will be covered along with their applications: the failure of classical physics; the special theory of relativity; the particle properties of electromagnetic radiation; the wave properties of particles; the Schr and ouml; dinger equation; the Rutherford-Bohr model of the atom and the hydrogen atom in wave mechanics.
GEN270Physics Laboratory
1 credits
The course covers principles and concepts of relativity, quantum mechanics and their applications. The following topics will be covered along with their applications: the failure of classical physics; the special theory of relativity; the particle properties of electromagnetic radiation; the wave properties of particles; the Schr and ouml; dinger equation; the Rutherford-Bohr model of the atom and the hydrogen atom in wave mechanics.
GEN350Mathematics for Engineers
3 credits
The main objective of this course is to complete the knowledge of mathematics for the student engineer. It mainly covers the following themes: functions of a complex variable; analytical functions; Cauchy-Riemann conditions; harmonic functions; Cauchy integrals formulae; Taylor series; singular points; inverse Laplace transformation; special functions (Gamma and Beta functions); Bessel function; orthogonal functions (Tchebychev, Legendre, Hermite, Laguerre); and discrete-time Markov Chains.
GEN428Numerical Analysis
3 credits
The purpose of this course is to provide numerical concepts and methods needed by students to solve different engineering problems. Topics covered include: resolution of non-linear equations; numerical integration; data approximation and interpolation and numerical resolution of differential equations. Many numerical methods are implemented and tested using Matlab software.
MAT202Elements of Mathematical Structures
3 credits
The course aims to provide the necessary tools and mathematical proficiency to engineers and scientists, for the design and analysis of abstract mathematical models. Subjects covered in the course include Fundamentals of Set Theory, Sequences and Cardinality, The Set of Complex Numbers, Complex Sequences and Complex polynomials, Logic and Proofs, Binary Relations and Their Applications, Functions and Their Properties, Partially Ordered and Ordered Sets, Semigroups, Groups, Subgroups, Isomorphism and Homomorphism. Applications to different fields of science and engineering will be a focus of this course, as this course is designed to meet the needs of students in these disciplines.
MAT207Algebra for Engineers 1
3 credits
The course aims at providing the necessary tools and the mathematical maturity for engineers, for the design and analysis of abstract mathematical models. Subjects covered: complex numbers, logic and proofs, propositional calculus, sets and mappings, relations and ordered sets, an introduction to algebraic structures, groups, rings and fields, polynomials, counting, finite and transfinite cardinals.
MAT213Single Variable Calculus
3 credits
This course covers the integral calculus of functions of one independent variable. Topics include the basic and advanced techniques of integration, analytic geometry of graphs of functions, and their limits, integrals, and derivatives, including the Fundamental Theorem of Calculus. Improper integrals, Sequences, Numerical Series, Power Series, Taylor Expansion, Parametric Equations, and Polar Coordinates will also be discussed. Applications to different fields of science and engineering will be a focus of this course, as this course is designed to meet the needs of students in these disciplines.
MAT217Calculus for Engineers 1
3 credits
The course covers integration methods to compute integrals and improper integrals. We will study the infinite series, Taylor expansion, Parametric curves and Polar curves, and double integrals.
MAT220Differential Equations
3 credits
This course aims to develop both theory and study techniques of Ordinary Differential Equations (ODEs). Topics covered in this course include Solutions of Non-Linear First-Order ODE's; Linear ODE's, Second-Order ODE's; Delta Functions, Convolution, and Laplace Transform Methods; Power Series and their use to solve differential equations; Real and Complex Fourier Series in addition to an Introduction to Partial Differential Equations. Applications to different fields of science and engineering will be a focus of this course, as this course is designed to meet the needs of students in these disciplines.
MAT227Calculus for Engineers 2
3 credits | Pre-requisite: MAT217
This course teaches basic theory and techniques of Ordinary Differential Equations (ODEs). Topics include: solution of non-linear first-order ODE's; linear ODE's, especially second order with constant and variable coefficients; delta functions, convolution, and Laplace transform methods; power series and resolution of differential equations using power series; real and complex Fourier series; and an introduction to partial differential equations.
MAT307Algebra for Engineers 2
3 credits | Pre-requisite: MAT207
The main objective of this course is to continue the study of algebra, covering mainly linear systems and matrices, matrix algebra, inverses, Gauss elimination, elementary matrices, computing inverses, determinants, vector spaces, definition and examples of spaces and subspaces, linear independence, basis and dimension, change of basis, linear applications, reduction of an endomorphism, eigenvalues, eigenvectors, characteristic polynomial, solving linear systems of differential equations, diagonalization and applications, bilinear and quadratic forms, Gauss method, scalar and cross product, euclidean and Hermitian spaces, Gram-Schmidt Orthogonalization process, geometric transformations.
MAT310Linear Algebra
3 credits
This course provides a modern elementary introduction to linear algebra and a broad selection of interesting applications. This modern approach reflects the ways scientists and engineers use linear algebra in practice. The topics covered in this course are Linear Equations in Linear Algebra, Matrix Algebra, Determinants, Vector Spaces, Eigenvalues and Eigenvectors, Orthogonality and Least Squares, Symmetric Matrices and Quadratic Forms.
Applications to different fields of science and engineering will be a focus of this course, as this course is designed to meet the needs of students in these disciplines.
MAT313Multivariable Calculus
3 credits
This course aims to introduce and familiarize students to the calculus of several variables. It covers topics such as vectors and the geometry of three-dimensional space, vector functions, partial derivatives, multiple integrals and vector calculus including line Integrals, Surface Integrals, Stokes’ Theorem and Divergence Theorem. Applications to different fields of science and engineering will be a focus of this course, as this course is designed to meet the needs of students in these disciplines.
MAT337Calculus for Engineers 3
3 credits | Pre-requisite: MAT217
The main objective of this course is to continue the study of calculus, covering mainly parametric and polar curves, three dimensional analytic geometry, differentiation and integration of functions of several variables, and vector calculus. Line integrals, and Green's theorem are also covered.
STA307Probability and Statistics for Engineers
3 credits | Pre-requisite: MAT217
This course aims to provide students with the most common concepts of probability theory and statistical inference, with a unique balance between theory and methodology. Interesting relevant applications using real data will be used to show how the concepts and methods can be applied to solve problems in the different fields of engineering in practice.
STA320Probability and Statistics
3 credits
This course aims to provide students with the most common concepts of probability theory and statistical inference, with a unique balance between theory and methodology. The course starts with a general overview of the main descriptive statistics’ practices; the probability theory will then be developed, Random variables will be introduced, their probability distributions and their main properties will be thoroughly studied. Both single variable distributions and joint distributions will be considered. A special focus will be given on the study of several discrete and continuous common distributions with an emphasis on their moments’ generating functions and their applications. Distributions of sums of random variables will be studied and the Central Limit Theorem will be introduced. The last part of this course will be dedicated to inferential statistics where confidence intervals and different types of hypotheses testing will be presented and performed. Students will also have the opportunity to deal with some statistical tools and software packages such as Excel, StatCrunch and/or SPSS. Interesting and relevant applications to different fields of science and engineering will be a focus of this course, as this course is designed to meet the needs of students in these disciplines.