GCH676Advanced Chemical Engineering Thermodynamics
3 credits
Efficient separation operations and many other chemical processes depend on a thorough understanding of the properties of gaseous and liquid mixtures. This course will interpret, correlate, and predict thermodynamic properties used in mixture-related phase-equilibrium calculations. Basic statistical mechanical principles and intermolecular forces will be discussed, and applied to the correlation and prediction of thermodynamic properties and phase equilibria. Statistical thermodynamics will be shown to work with classical thermodynamics, molecular physics, and physical chemistry to solve real-world problems.
GCH678Advanced Kinetics and Reactor Design
3 credits
This course is a study of chemical kinetics and mechanisms in complex homogeneous and heterogeneous reaction systems, and the design and analysis of chemical reactors for such systems.
GMC544Fluid Rheology
3 credits
The objective of this course is to introduce the fundamentals of fluid-structure interaction (FSI) by a sequence of gradually complex problems. In the process, basics of fluid mechanics, wave hydrodynamics, floating system dynamics, and vibrations are also covered. Topics covered include linear wave theory, linear and nonlinear oscillators, potential flow methods, wave force prediction methods, vortex-induced vibration and seakeeping.
GCH642Food and Pharmaceutical Processes
3 credits
The objective of this course is for students to understand the role played by chemical engineers in these branches of industry, become familiar with all unit operations used by the food and pharmaceutical industries, and to develop the ability to integrate all scientific and technical knowledge among the food and pharmaceutical engineering processes. Topics covered by this course are: drying processes, axis conditioning and humidification, extraction, crystallization, filtration, evaporation and distillation, cooling, stirring, mixing, extrusion cooking, mechanical operations (milling, screening, etc.), membrane and chromatographic separations, biological processes, handling and storage of granules and powders.
GCH677Mass Transport
3 credits
Students will examine the mathematical description of mass transport processes, including analytical solutions for steady state, transient, and multi-dimensional diffusion.
This course explores a wide range of mass transfer behavior for binary and multicomponent systems that are encountered in chemical engineering. Special attention will be given to developing mathematical solutions to common steady and transient mass transfer problems, with an emphasis on understanding the physical implications of such systems. Fick’s law, flux definitions, constitutive equations, and conservation equations will be developed. Steady and transient mass transfer by diffusion will be analyzed in detail along with convective mass transfer, mass transport in flowing media, and free convection. Models will also be developed for mass transfer with simultaneous homogeneous or heterogeneous reaction and simultaneous heat and mass transfer. Attention is also given to the development of boundary layer theory and correlations for mass transfer by forced convection. Special topics may include: membrane separation processes, drug delivery and controlled release, and adsorption separations.
GCH679Mathematical Modeling
3 credits
Students will study the formulation and solution of mathematical models of a range of chemical processes with an emphasis on differential balances and incorporation of uncertainty. This course introduces a range of analytical and numerical methods for the solution of mathematical equations encountered in chemical engineering. Topics are motivated by and presented in the context of physical phenomena encountered in chemical engineering industrial and research problems. The accuracy and computational complexity of each approach, along with their potential modes of failure, are highlighted. Attention is also given to interpretation and handling of uncertainty in the context of different problems. MATLAB is used in the course as a vehicle for teaching basic programming technique and the use of commercial numerical packages.
GCH681Process Integration Lab
1 credits
This course will cover the advanced level of process integration and pinch problem theory. It will introduce the newest technologies applied in that field. Students will use first principles, and simulators (such as heat) in order to design a process integration network for both chemical and petrochemical selected processes.
GCH643Production and Processing of Metals
3 credits
This course covers the following topics: unit operations of metallurgy (pyrometallurgical and hydrometallurgical plants), description of unit operations (material and energy balances, thermodynamic description, kinetic description), steel (high furnace processes, processes converters, alternative methods), metallurgy of non-ferrous metals (copper, zinc, lead, reactive metals: aluminum, titanium), metal recycling.
GCH530Properties of Polymers
2 credits
Synthetic polymers have become an integral part of our lives and can be found in many every day and advanced materials: rubber tires, bullet-proof vests, paints, fibers, contact lenses, drug delivery vehicles and many others. This course investigates these natural and man-made materials. Students will explore how these materials are synthesized, evaluated, and their commercial applications. They will also review important properties that these materials possess, including their molecular, physical, chemical, thermal, mechanical, and electrical properties. Students will be introduced to the methods of preparation of advanced polymer structures, such as block, star and brush copolymers, semi-conducting and biodegradable polymers. Finally, the forming techniques for plastics (compression molding, injection molding) and the different parameters leading to the degradation of polymers will also be covered.
GCH680Unit Integration Design and Control
3 credits
Reactive distillation is an excellent example of process innovation and intensification. In this course we introduce reactive distillation process design and control, starting with the steady-state design of an ideal quaternary system, steady-state design of real chemical systems, and control of ideal systems. Students will also learn about hybrid and non-conventional systems. By the end of the course students should be able to design and control at least one reactive distillation process.
GCH632Water and Waste Treatment
3 credits
This course covers the following topics: physico-chemical water treatment, such as micro straining, flocculation, sedimentation, filtration, disinfection, precipitation, removal of iron and manganese, adsorption, stabilization, thickening and sludge dewatering; waste treatment systems, such as characterization and quantification, reduction and recycling, manufacturing-derived waste, composting, incineration, combustion and pyrolysis, types of incinerators, waste and air emissions, landfill, energy recovery and pollution control.